Circle And System Of Circles Question 339

Question: If the middle point of a chord of the circle $ x^{2}+y^{2}+x-y-1=0 $ be (1, 1), then the length of the chord is

Options:

A) 4

B) 2

C) 5

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

Here radius of circle is $ AC=\sqrt{{{( \frac{1}{2} )}^{2}}+{{( \frac{1}{2} )}^{2}}+1}=\sqrt{\frac{3}{2}} $ and $ CB=\sqrt{{{( \frac{3}{2} )}^{2}}+{{( \frac{1}{2} )}^{2}}}=\sqrt{\frac{10}{4}}=\sqrt{\frac{5}{2}} $ Now $ AB^{2}=AC^{2}-BC^{2}=\frac{3}{2}-\frac{5}{2}=-1 $

$ \Rightarrow $ There is no possible value for AB. Aliter : Since the point (1, 1) lies outside the circle, therefore no such chord exist.