Circle And System Of Circles Question 348

Question: If the straight line $ y=mx+c $ touches the circle $ x^{2}+y^{2}-4y=0 $ , then the value of c will be

[RPET 1988]

Options:

A) $ 1+\sqrt{1+m^{2}} $

B) $ 1-\sqrt{m^{2}+1} $

C) $ 2(1+\sqrt{1+m^{2}}) $

D) $ 2+\sqrt{1+m^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Apply for tangency of line, centre being (0, 2) and radius = 2 $ | \frac{-2+c}{\sqrt{1+m^{2}}} |=2\Rightarrow c^{2}-4c+4=4+4m^{2} $

$ \Rightarrow c=\frac{4\pm \sqrt{16+16m^{2}}}{2} $ or $ c=2\pm 2\sqrt{1+m^{2}} $ Most correct answer is $ c=2(1+\sqrt{1+m^{2}}) $ .