Circle And System Of Circles Question 348

Question: If the straight line $ y=mx+c $ touches the circle $ x^{2}+y^{2}-4y=0 $ , then the value of c will be

[RPET 1988]

Options:

A) $ 1+\sqrt{1+m^{2}} $

B) $ 1-\sqrt{m^{2}+1} $

C) $ 2(1+\sqrt{1+m^{2}}) $

D) $ 2+\sqrt{1+m^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Apply for tangency of line, centre being (0, 2) and radius = 2 $ | \frac{-2+c}{\sqrt{1+m^{2}}} |=2\Rightarrow c^{2}-4c+4=4+4m^{2} $

$ \Rightarrow c=\frac{4\pm \sqrt{16+16m^{2}}}{2} $ or $ c=2\pm 2\sqrt{1+m^{2}} $ Most correct answer is $ c=2(1+\sqrt{1+m^{2}}) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें