Circle And System Of Circles Question 351

Question: The distance between the chords of contact of the tangents to the circle $ x^{2}+y^{2}+2gx+2fy+c=0 $ from the origin and the point $ (g,f) $ is

Options:

A) $ \frac{1}{2}( \frac{g^{2}+f^{2}-c}{\sqrt{g^{2}+f^{2}}} ) $

B) $ ( \frac{g^{2}+f^{2}-c}{\sqrt{g^{2}+f^{2}}} ) $

C) $ \frac{1}{2}( \frac{g^{2}+f^{2}-c}{g^{2}+f^{2}} ) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Chord of contact from origin $ \equiv gx+fy+c=0 $ and from $ (g,\ f)\equiv gx+fy+g(x+g)+f(y+f)+c=0 $ or $ 2gx+2fy+g^{2}+f^{2}+c=0 $

$ \therefore $ Distance $ =\frac{\frac{g^{2}+f^{2}+c}{2}-c}{\sqrt{g^{2}+f^{2}}} $

$ =\frac{g^{2}+f^{2}-c}{2\sqrt{g^{2}+f^{2}}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें