Circle And System Of Circles Question 352

Question: The angle between the two tangents from the origin to the circle $ {{(x-7)}^{2}}+{{(y+1)}^{2}}=25 $ is

[MNR 1990; RPET 1997; DCE 2000]

Options:

A) 0

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{6} $

D) $ \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

Any line through (0, 0) be $ y-mx=0 $ and it is a tangent to circle $ {{(x-7)}^{2}}+{{(y+1)}^{2}}=25 $ , if $ \frac{-1-7m}{\sqrt{1+m^{2}}}=5\Rightarrow m=\frac{3}{4},\ -\frac{4}{3} $ . Therefore, the product of both the slopes is -1. i.e., $ \frac{3}{4}\times -\frac{4}{3}=-1 $ .

Hence the angle between the two tangents is $ \frac{\pi }{2} $ .