Circle And System Of Circles Question 362

Question: If the lines $ l_1x+m_1y+n_1=0 $ and $ l_2x+m_2y+n_2=0 $ cuts the axes at con-cyclic points, then

Options:

A) $ l_1l_2=m_1m_2 $

B) $ l_1m_1=l_2m_2 $

C) $ l_1l_2+m_1m_2=0 $

D) $ l_1m_2=l_2m_1 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ P_1\equiv ( -\frac{n_1}{l_1},\ 0 ) $ , $ P_2\equiv ( 0,\ \frac{-n_1}{m_1} ) $ , $ P_3\equiv ( -\frac{n_2}{l_2},\ 0 ) $ and $ P_4\equiv ( 0,\ -\frac{n_2}{m_2} ) $

$ {\angle P_1P_2P_3=\angle P_1P_4P_3} $ Now, $ m_{12}=-\frac{l_1}{m_1},\ m_{23}=-\frac{n_1}{n_2}.\frac{l_2}{m_1},\ m_{14}=-\frac{n_2}{n_1}.\frac{l_1}{m_2} $ , $ m_{34}=-\frac{l_2}{m_2} $

$ \tan \theta =\frac{-\frac{l_1}{m_1}+\frac{n_1l_2}{n_2m_1}}{1+\frac{n_1l_1l_2}{n_2m_1^{2}}} $ and $ \tan \varphi =\frac{-\frac{n_2l_1}{n_1m_2}+\frac{l_2}{m_2}}{1+\frac{n_2l_1l_2}{n_1m_2^{2}}} $ Now, $ \tan \theta =\tan \varphi \Rightarrow m_1m_2=l_1l_2 $ Aliter: Line $ l_1x+m_1y+n_1=0 $ cuts x and y-axes in $ A( -\frac{n_1}{l_1},\ 0 ) $ , $ B( 0,\ -\frac{n_1}{m_1} ) $ and line $ l_2x+m_2y+n_2=0 $ cuts axes in $ C( -\frac{n_2}{l_2},\ 0 ) $ , $ D( 0,\ \frac{-n_2}{m_2} ) $ . So AC and BD are chords along x and y-axes intersecting at origin O. Since A, B, C, D are concyclic, so OA.OC = OB.OD or $ | ( -\frac{n_1}{l_1} )( -\frac{n_2}{l_2} ) |=| ( -\frac{n_1}{m_1} )( -\frac{n_2}{m_2} ) | $ or $ |l_1l_2|\ =\ |m_1m_2| $ So $ l_1l_2=m_1m_2 $ is correct among the given choices, which is given in (a).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें