Circle And System Of Circles Question 363

Question: A pair of tangents are drawn from the origin to the circle $ x^{2}+y^{2}+20(x+y)+20=0 $ . The equation of the pair of tangents is

[MP PET 1990]

Options:

A) $ x^{2}+y^{2}+10xy=0 $

B) $ x^{2}+y^{2}+5xy=0 $

C) $ 2x^{2}+2y^{2}+5xy=0 $

D) $ 2x^{2}+2y^{2}-5xy=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of pair of tangents is given by $ SS_1=T^{2} $ . Here $ S=x^{2}+y^{2}+20(x+y)+20,\ \ S_1=20 $

$ T=10(x+y)+20 $

$ \therefore \ SS_1=T^{2} $

$ \Rightarrow 20,{x^{2}+y^{2}+20(x+y)+20}=10^{2}{{(x+y+2)}^{2}} $

$ \Rightarrow 4x^{2}+4y^{2}+10xy=0\Rightarrow 2x^{2}+2y^{2}+5xy=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें