Circle And System Of Circles Question 363

Question: A pair of tangents are drawn from the origin to the circle $ x^{2}+y^{2}+20(x+y)+20=0 $ . The equation of the pair of tangents is

[MP PET 1990]

Options:

A) $ x^{2}+y^{2}+10xy=0 $

B) $ x^{2}+y^{2}+5xy=0 $

C) $ 2x^{2}+2y^{2}+5xy=0 $

D) $ 2x^{2}+2y^{2}-5xy=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of pair of tangents is given by $ SS_1=T^{2} $ . Here $ S=x^{2}+y^{2}+20(x+y)+20,\ \ S_1=20 $

$ T=10(x+y)+20 $

$ \therefore \ SS_1=T^{2} $

$ \Rightarrow 20,{x^{2}+y^{2}+20(x+y)+20}=10^{2}{{(x+y+2)}^{2}} $

$ \Rightarrow 4x^{2}+4y^{2}+10xy=0\Rightarrow 2x^{2}+2y^{2}+5xy=0 $ .