Circle And System Of Circles Question 372

Question: The line $ y=mx+c $ intersects the circle $ x^{2}+y^{2}=r^{2} $ at two real distinct points, if

Options:

A) $ -r\sqrt{1+m^{2}}<c\le 0 $

B) $ 0\le c<r\sqrt{1+m^{2}} $

C) (a) and (b) both

D) $ -c\sqrt{1-m^{2}}<r $

Show Answer

Answer:

Correct Answer: C

Solution:

Substituting equation of line $ y=mx+c $ in circle $ x^{2}+y^{2}=r^{2} $

$ x^{2}+{{(mx+c)}^{2}}=r^{2}\Rightarrow {{(1+m)}^{2}}x^{2}+2mxc+c^{2}-r^{2}=0 $ If discriminant is greater than zero; two real values of x will be obtained so, $ B^{2}>4AC $ . $ 4m^{2}c^{2}-4(c^{2}-r^{2})(1+m^{2})>0 $

$ r^{2}(1+m^{2})>c^{2} $

$ 0\le c<r\sqrt{1+m^{2}} $ and $ -r\sqrt{(1+m^{2})}<c\le 0 $ .