Circle And System Of Circles Question 372

Question: The line $ y=mx+c $ intersects the circle $ x^{2}+y^{2}=r^{2} $ at two real distinct points, if

Options:

A) $ -r\sqrt{1+m^{2}}<c\le 0 $

B) $ 0\le c<r\sqrt{1+m^{2}} $

C) (a) and (b) both

D) $ -c\sqrt{1-m^{2}}<r $

Show Answer

Answer:

Correct Answer: C

Solution:

Substituting equation of line $ y=mx+c $ in circle $ x^{2}+y^{2}=r^{2} $

$ x^{2}+{{(mx+c)}^{2}}=r^{2}\Rightarrow {{(1+m)}^{2}}x^{2}+2mxc+c^{2}-r^{2}=0 $ If discriminant is greater than zero; two real values of x will be obtained so, $ B^{2}>4AC $ . $ 4m^{2}c^{2}-4(c^{2}-r^{2})(1+m^{2})>0 $

$ r^{2}(1+m^{2})>c^{2} $

$ 0\le c<r\sqrt{1+m^{2}} $ and $ -r\sqrt{(1+m^{2})}<c\le 0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें