Circle-And-System-Of-Circles Question 374
The equation of normal to the circle $ x^{2}+y^{2}-x-\frac{5}{2}y+\frac{3}{2}=0 $ at (1, 1) is
[MP PET 2001]
Options:
A) $ x-2y=2 $
B) $ x+2y=\pm ,2\sqrt{3} $
C) $ x+2y=\pm ,2\sqrt{5} $
D) $ x-2y=\pm ,2\sqrt{5} $
Show Answer
Answer:
Correct Answer: C
Solution:
Trick: Only (b) and (c) lines are parallel to  $ x+2y+3=0 $                          Also the line is a tangent to  $ x^{2}+y^{2}=4 $                     Its distance from (0, 0) should be 2.                    Therefore c is the answer.               Alternative method:                    Centre of  $ x^{2}+y^{2}=4 $  is (0, 0).                    Tangents which are parallel to  $ x+2y+3=0 $  is  $ x+2y+\lambda =0 $                                      …..(i)                    Perpendicular distance from (0,0) to  $ x+2y+\lambda =0 $  should be equal to radius of circle, (Clearly radius = 2).
$ \therefore  $   $ \frac{0+2\times ,0+\lambda }{\sqrt{1^{2}+2^{2}}}=,\pm ,2 $
$ \Rightarrow  $   $ \lambda ,=\pm ,2\sqrt{5} $                     Put the value of  $ \lambda , $  in (i),                    tangents of circle are  $ x+2y=,\pm ,2\sqrt{5}. $
 BETA
  BETA 
             
             
           
           
           
          