Circle-And-System-Of-Circles Question 378

Question: If $ 5x-12y+10=0 $ and $ 12y-5x+16=0 $ are two tangents to a circle, then the radius of the circle is

[EAMCET 2003]

Options:

A) $ 20r^{2} $

B) $ 52r^{2} $

C) $ \frac{52}{9}r^{2} $

D) $ \frac{20}{9}r^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Equation of line is $ 3x-2y=k $ …… (i) Circle is $ x^{2}+y^{2}=4r^{2} $ ….. (ii) Equation of line can be written as $ y=\frac{3}{2}x-\frac{k}{2} $ Here, $ c=-\frac{k}{2},,m=\frac{3}{2} $ Now the line will meet the circle at one point, if $ c=\pm a\sqrt{1+m^{2}} $ $ =\frac{-k}{2}=\pm (2r),\sqrt{1+{{( \frac{3}{2} )}^{2}}} $ {From (ii), a = 2r} $ \frac{k^{2}}{4}=4r^{2}\times \frac{13}{4} $ $ \therefore $ $ k^{2}=52r^{2}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें