Circle And System Of Circles Question 38

Question: The circles $ x^{2}+y^{2}=9 $ and $ x^{2}+y^{2}-12y+27=0 $ touch each other. The equation of their common tangent is

[MP PET 1998]

Options:

A) $ \frac{2b}{\sqrt{a^{2}-4b^{2}}} $

B) $ \frac{\sqrt{a^{2}-4b^{2}}}{2b} $

C) $ \frac{2b}{a-2b} $

D) $ \frac{b}{a-2b} $

Show Answer

Answer:

Correct Answer: A

Solution:

Any tangent to $ x^{2}+y^{2}=b^{2} $ is $ y=mx-b,\sqrt{1+m^{2}}. $ It touches $ {{(x-a)}^{2}}+y^{2}=b^{2} $ , if $ \frac{ma-b\sqrt{1+m^{2}}}{\sqrt{m^{2}+1}}=b $ or $ ma=2b\sqrt{1+m^{2}} $ or $ m^{2}a^{2}=4b^{2}+4b^{2}m^{2} $ ,
$ \therefore $ $ m=\pm ,\frac{2b}{\sqrt{a^{2}-4b^{2}}} $ .