Circle And System Of Circles Question 40

Question: If the tangent at a point $ P(x,y) $ of a curve is perpendicular to the line that joins origin with the point P, then the curve is

[MP PET 1998]

Options:

A) $ ( \frac{-7}{2},-4 ) $

B) $ ( \frac{-18}{5},\frac{-21}{5} ) $

C) (2,-7)

D) (-2, -5)

Show Answer

Answer:

Correct Answer: B

Solution:

Let point of contact be $ P(x_1,\ y_1) $ . This point lies on line $ x_1+2y_1=-12 $ …………. (i) Gradient of $ OP=m_1=\frac{y_1}{x_1} $ Gradient of $ x+2y+12=0 $ is $ m_2=-\frac{1}{2} $ The two lines are perpendicular, $ \therefore \ m_1m_2=-1 $

$ \Rightarrow ( \frac{y_1-1}{x_1+1} )( \frac{-1}{2} )=-1\Rightarrow y_1-1=2x_1+2 $

$ \Rightarrow 2x_1-y_1=-3 $ …………. (ii) On

Solving equation (i) and (ii), we get $ (x_1,\ y_1)=( \frac{-18}{5},\ \frac{-21}{5} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें