Circle And System Of Circles Question 48

Equation of the tangent to the circle $ x^{2}+y^{2}=a^{2} $ which is perpendicular to the straight line $ y=mx+c $ is $ x = my \pm a\sqrt{m^{2}+1} $

Options:

1

-1

C) $ \frac{3}{2} $

D) $ \frac{1}{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

The equation of tangent at point $ (-2,\ -3) $ to the circle $ x^{2}+y^{2}+2x+4y+3=0 $ is, $ -2x-3y+1(x+2)+2(y+3)+3=0 $

$ \Rightarrow -2x-3y+x-2+2y-6+3=0 $

$ \Rightarrow -x-y-5=0\Rightarrow x+y+5=0 $ or $ y=-x-5 $ ; so, $ m=-1 $

Hence, gradient of normal $ =\frac{-1}{m}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें