Circle And System Of Circles Question 51

Question: The two circles $ x^{2}+y^{2}-2x+6y+6=0 $ and $ x^{2}+y^{2}-5x+6y+15=0 $ touch each other. The equation of their common tangent is

[DCE 1999]

Options:

A) $ ax-by=0 $

B) $ ax+by=0 $

C) $ bx-ay=0 $

D) $ bx+ay=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

Obviously the slope of the tangent will be $ -( \frac{1}{b/a} ) $ i.e., $ -\frac{a}{b} $ .

Hence the equation of the tangent is $ y=-\frac{a}{b}x\ $ i.e., $ by+ax=0 $ .