Circle And System Of Circles Question 63

Question: A line through (0,0) cuts the circle $ x^{2}+y^{2}-2ax=0 $ at A and B, then locus of the centre of the circle drawn on AB as a diameter is

[RPET 2002]

Options:

A) $ x^{2}+y^{2}-2ay=0 $

B) $ x^{2}+y^{2}+ay=0 $

C) $ x^{2}+y^{2}+ax=0 $

D) $ x^{2}+y^{2}-ax=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

Let chord AB is $ y=mx $ …..(i) Equation of CM, $ x+my=\lambda $ It is passing through (a, 0)
$ \therefore $ $ x+my=a $ …..(ii)

From (i) and (ii), $ x+y.,\frac{y}{x}=a $

therefore $ x^{2}+y^{2}=ax $

$ \Rightarrow $ $ x^{2}+y^{2}-ax=0 $ is the locus of the centre of the circle.