Circle And System Of Circles Question 67

Question: Consider the following statements : Assertion : The circle $ x^{2}+y^{2}=1 $ has exactly two tangents parallel to the x-axis Reason (R) : $ \frac{dy}{dx}=0 $ on the circle exactly at the point $ (0,\pm 1) $ . Of these statements

[SCRA 1996]

Options:

A) $ 3x+4y=\pm 2\sqrt{5} $

B) $ 6x+8y=\pm \sqrt{5} $

C) $ 3x+4y=\pm \sqrt{5} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of tangent $ y=\frac{-3}{4}x\pm \frac{1}{\sqrt{5}}\sqrt{1+{{( \frac{-3}{4} )}^{2}}} $

therefore $ y=\frac{-3}{4}x\pm \frac{1}{\sqrt{5}}\sqrt{\frac{16+9}{16}} $

therefore $ 4y=-3x\pm \sqrt{5}\Rightarrow 3x+4y=\pm \sqrt{5} $