Circle And System Of Circles Question 68

Question: From the origin chords are drawn to the circle $ {{(x-1)}^{2}}+y^{2}=1 $ . The equation of the locus of the middle points of these chords is

[IIT 1985; EAMCET 1991]

Options:

A) $ x^{2}+y^{2}-3x=0 $

B) $ x^{2}+y^{2}-3y=0 $

C) $ x^{2}+y^{2}-x=0 $

D) $ x^{2}+y^{2}-y=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

The given circle is $ x^{2}+y^{2}-2x=0 $ . Let $ (x_1,\ y_1) $ be the middle point of any chord of this circle, than its equation is $ S_1=T $ . or $ x_1^{2}+y_1^{2}-2x_1=xx_1+yy_1-(x+x_1) $

If it passes through (0, 0), then $ x_1^{2}+y_1^{2}-2x_1=-x_1\Rightarrow x_1^{2}+y_1^{2}-x_1=0 $

Hence the required locus of the given point $ (x_1,\ y_1) $ is $ x^{2}+y^{2}-x=0 $ .