Circle And System Of Circles Question 7

Question: . If OA and OB are the tangents from the origin to the circle $ x^{2}+y^{2}+2gx+2fy+c=0 $ and C is the centre of the circle, the area of the quadrilateral $ OACB $ is

Options:

A) $ \frac{1}{2}\sqrt{c(g^{2}+f^{2}-c)} $

B) $ \sqrt{c(g^{2}+f^{2}-c)} $

C) $ c\sqrt{g^{2}+f^{2}-c} $

D) $ \frac{\sqrt{g^{2}+f^{2}-c}}{c} $

Show Answer

Answer:

Correct Answer: B

Solution:

Area of quadrilateral $ =2 $ [area of $ \Delta OAC $ ] $ =2.\frac{1}{2}OA\ .\ AC=\sqrt{S_1}.,\sqrt{g^{2}+f^{2}-c} $ Point is (0, 0) $ \Rightarrow S_1=c $ .
$ \therefore $ Area $ =\sqrt{c}.\sqrt{g^{2}+f^{2}-c} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें