Circle And System Of Circles Question 74

Question: If the equation of the tangent to the circle $ x^{2}+y^{2}-2x+6y-6=0 $ parallel to $ 3x-4y+7=0 $ is $ 3x-4y+k=0 $ , then the values of k are

[Kerala (Engg.) 2005]

Options:

A) (2, 1)

B) (1, 2)

C) (1, 2)

D) (-1, 2)

Show Answer

Answer:

Correct Answer: C

Solution:

As the line $ ax+by=0 $ touches the circle $ x^{2}+y^{2}+2x+4y=0 $ , distance of the centre (-1, -2) from the line = radius

therefore $ | \frac{-a-2b}{\sqrt{a^{2}+b^{2}}} |=\sqrt{{{(-1)}^{2}}+{{(-2)}^{2}}} $

therefore $ {{(a+2b)}^{2}}=5(a^{2}+b^{2}) $

therefore $ 4a^{2}-4ab+b^{2}=0 $

therefore $ {{(2a-b)}^{2}}=0 $ \ $ b=2a $ . Next, $ ax+by=0 $ is a normal to $ x^{2}+y^{2}-4x+2y-3=0 $ , the centre (2, -1) should lie on $ ax+by=0 $ \ $ 2a-b=0\Rightarrow b=2a $ .

Hence $ a=1 $ , $ b=2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें