Circle And System Of Circles Question 77

Question: The equation of the circle through the points of intersection of $ x^{2}+y^{2}-1=0 $ , $ x^{2}+y^{2}-2x-4y+1=0 $ and touching the line $ x+2y=0 $ , is

[Roorkee 1989]

Options:

A) $ x^{2}+y^{2}+x+2y=0 $

B) $ x^{2}+y^{2}-x+20=0 $

C) $ x^{2}+y^{2}-x-2y=0 $

D) $ 2(x^{2}+y^{2})-x-2y=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Family of circles is $ x^{2}+y^{2}-2x-4y+1+\lambda (x^{2}+y^{2}-1)=0 $ . $ (1+\lambda )x^{2}+(1+\lambda )y^{2}-2x-4y+(1-\lambda )=0 $

$ x^{2}+y^{2}-\frac{2}{1+\lambda }x-\frac{4}{1+\lambda }y+\frac{1-\lambda }{1+\lambda }=0 $ ….. (i) Centre is $ [ \frac{1}{1+\lambda },\ \frac{2}{1+\lambda } ] $ and radius $ =\sqrt{{{( \frac{1}{1+\lambda } )}^{2}}+{{( \frac{2}{1+\lambda } )}^{2}}-\frac{1-\lambda }{1+\lambda }}=\frac{\sqrt{4+{{\lambda }^{2}}}}{1+\lambda } $ . Since it touches the line $ x+2y=0 $ ,

Hence Radius = Perpendicular from centre to the line i.e., $ | \frac{\frac{1}{1+\lambda }+2\frac{2}{1+\lambda }}{\sqrt{1^{2}+2^{2}}} |=\frac{\sqrt{4+{{\lambda }^{2}}}}{1+\lambda }\Rightarrow \sqrt{5}=\sqrt{4+{{\lambda }^{2}}}\Rightarrow \lambda \pm 1 $

$ \Rightarrow \sqrt{5}=\sqrt{4+{{\lambda }^{2}}}\Rightarrow \lambda =\pm 1 $

$ \lambda =-1 $ cannot be possible in case of circle. So $ \lambda =1 $ . Thus, from (i) $ x^{2}+y^{2}-x-2y=0 $ is the required equation of the circle.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें