Circle And System Of Circles Question 97

Question: The equation of the circle which touches both axes and whose centre is $ (x_1,\ y_1) $ is

[MP PET 1988]

Options:

A) $ x^{2}+y^{2}+2x_1(x+y)+x_1^{2}=0 $

B) $ x^{2}+y^{2}-2x_1(x+y)+x_1^{2}=0 $

C) $ x^{2}+y^{2}=x_1^{2}+y_1^{2} $

D) $ x^{2}+y^{2}+2xx_1+2yy_1=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

The equation will be $ {{(x-x_1)}^{2}}+{{(y-y_1)}^{2}}=r^{2} $ As the circle touches both the axes, $ (r)=\sqrt{{{(4)}^{2}}+{{(3)}^{2}}}=5 $ \ $ {{(x-x_1)}^{2}}+{{(y-x_1)}^{2}}=x_1^{2} $

therefore $ x^{2}+y^{2}-2x_1(x+y)+x_1^{2}=0 $ .