Complex Numbers And Quadratic Equations question 12

Question: If x is real, then the maximum and minimum values of expression $ \frac{x^{2}+14x+9}{x^{2}+2x+3} $ will be [Dhanbad Engg. 1968]

Options:

A) 4, - 5

B) 5, - 4

C) - 4, 5

D) - 4, - 5

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y=\frac{x^{2}+14x+9}{x^{2}+2x+3} $
Þ $ y(x^{2}+2x+3)-x^{2}-14x-9=0 $
$ \Rightarrow $ $ (y-1)x^{2}+(2y-14)x+3y-9=0 $ For real x, its discriminant $ \ge 0 $ i.e. $ 4{{(y-7)}^{2}}-4(y-1)3(y-3)\ge 0 $
Þ $ y^{2}+y-20\le $ 0 or $ (y-4)(y+5)\le 0 $ Now, the product of two factors is negative if these are of opposite signs. So following two cases arise: Case I: $ y-4\ge 0 $ or $ y\ge 4 $ and $ y+5\le 0 $ or $ y\le -5 $ This is not possible. Case II: $ y-4\le 0 $ or $ y\le 4 $ and $ y+5\ge 0 $ or $ y\ge -5 $ Both of these are satisfied if $ -5\le y\le 4 $ Hence maximum value of y is 4 and minimum value is - 5.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें