Complex Numbers And Quadratic Equations question 125
Question: The number of real values of $ a $ satisfying the equation $ a^{2}-2a\sin x+1=0 $ is
Options:
A) Zero
One
Two
D) Finite
Show Answer
Answer:
Correct Answer: C
Solution:
Given equation   $ a^{2}-2a\sin x+1=0 $
$ \therefore  $   $ a=\frac{2\sin x\pm \sqrt{4{{\sin }^{2}}x-4}}{2} $   $ =\sin x\pm \sqrt{-(1-{{\sin }^{2}}x)} $   $ a=\sin x\pm i\cos x $  If  $ x=\frac{\pi }{2} $
Þ  $ a=1, $  $ x=270^{o} $
Þ  $ a=-1 $ .
 BETA
  BETA 
             
             
           
           
           
          