Complex Numbers And Quadratic Equations question 134

Question: The locus of $ z $ satisfying the inequality $ {\log_{1/3}}|z+1|> $ $ {\log_{1/3}}|z-1| $ is

Options:

A) $ R(z)<0 $

B) $ R(z)>0 $

C) $ I(z)<0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

We know that $ {\log_{a}}m>{\log_{a}}n $ Þ $ m>n $ or $ m<n $ , according as $ a>1 $ or $ 0<a<1 $ . Hence for $ z=x+iy $ $ {\log_{(1/3)}}|z+1|>{\log_{(1/3)}}|z-1|\Rightarrow |z+1| $ $ <|z-1| $ $ { \because 0<\frac{1}{3}<1 } $
Þ $ |x+iy+1|<|x+iy-1| $
Þ $ {{(x+1)}^{2}}+y^{2}<{{(x-1)}^{2}}+y^{2} $
Þ $ 4x<0\Rightarrow x<0\Rightarrow Re(z)<0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें