Complex Numbers And Quadratic Equations question 134

Question: The locus of $ z $ satisfying the inequality $ {\log_{1/3}}|z+1|> $ $ {\log_{1/3}}|z-1| $ is

Options:

A) $ R(z)<0 $

B) $ R(z)>0 $

C) $ I(z)<0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

We know that $ {\log_{a}}m>{\log_{a}}n $ Þ $ m>n $ or $ m<n $ , according as $ a>1 $ or $ 0<a<1 $ . Hence for $ z=x+iy $ $ {\log_{(1/3)}}|z+1|>{\log_{(1/3)}}|z-1|\Rightarrow |z+1| $ $ <|z-1| $ $ { \because 0<\frac{1}{3}<1 } $
Þ $ |x+iy+1|<|x+iy-1| $
Þ $ {{(x+1)}^{2}}+y^{2}<{{(x-1)}^{2}}+y^{2} $
Þ $ 4x<0\Rightarrow x<0\Rightarrow Re(z)<0 $