Complex Numbers And Quadratic Equations question 139

Question: If $ z_1,z_2,z_3 $ are complex numbers such that $ |z_1|=|z_2|= $ $ |z_3|= $ $ | \frac{1}{z_1}+\frac{1}{z_2}+\frac{1}{z_3} |=1, $ then $ |z_1+z_2+z_3| $ is [MP PET 2004; IIT Screening 2000]

Options:

A) Equal to 1

B) Less than 1

C) Greater than 3

D) Equal to 3

Show Answer

Answer:

Correct Answer: A

Solution:

$ 1=| \frac{1}{z_1}+\frac{1}{z_2}+\frac{1}{z_3} | $ $ =| \frac{z_1{{{\bar{z}}}_1}}{z_1}+\frac{z_2{{{\bar{z}}}_2}}{z_2}+\frac{z_3{{{\bar{z}}}_3}}{z_3} | $ $ (\because |z_1{{|}^{2}}=1=z_1{{\overline{z}}_1},etc) $ $ =|{{\bar{z}}_1}+{{\bar{z}}_2}+{{\bar{z}}_3}|=|\overline{z_1+z_2+z_3}|=|z_1+z_2+z_3| $ $ (\because |{{\bar{z}}_1}|=|z_1|) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें