Complex Numbers And Quadratic Equations question 141
Question: If $ z_1,z_2,z_3 $ be three non-zero complex number, such that $ z_2\ne z_1,a=|z_1|,b=|z_2| $ and $ c=|z_3| $ suppose that $ \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix} =0 $ , then $ arg( \frac{z_3}{z_2} ) $ is equal to
Options:
A) $ arg{{( \frac{z_2-z_1}{z_3-z_1} )}^{2}} $
B) $ arg( \frac{z_2-z_1}{z_3-z_1} ) $
C) $ arg{{( \frac{z_3-z_1}{z_2-z_1} )}^{2}} $
D) $ arg( \frac{z_3-z_1}{z_2-z_1} ) $
Show Answer
Answer:
Correct Answer: C
Solution:
First deduce that $ a=b=c $ , then it will be equal to $ arg{{( \frac{z_3-z_1}{z_2-z_1} )}^{2}} $ .