Complex Numbers And Quadratic Equations question 147

Question: If $ x=\cos \theta +i\sin \theta $ and $ y=\cos \varphi +i\sin \varphi $ , then $ x^{m}y^{n}+{x^{-m}}{y^{-n}} $ is equal to

Options:

A) $ \cos (m\theta +n\varphi ) $

B) $ \cos (m\theta +n\varphi ) $

C) $ 2\cos (m\theta +n\varphi ) $

D) $ 2\cos (m\theta -n\varphi ) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ x=\cos \theta +i\sin \theta ={e^{i\theta }},y=\cos \varphi +i\sin \varphi ={e^{i\varphi }} $
$ \therefore x^{m}y^{n}+{x^{-m}}{y^{-n}}={e^{im\theta }}{e^{in\varphi }}+{e^{-im\theta }}{e^{-in\varphi }} $ $ ={e^{i(m\theta +n\varphi )}}+{e^{-i(m\theta +n\varphi )}} $ $ =\cos (m\theta +n\varphi )+i\sin (m\theta +n\varphi ) $ $ =2\cos (m\theta +n\varphi ) $