Complex Numbers And Quadratic Equations question 149

Question: If $ a,b,c $ and $ u,v,w $ are complex numbers representing the vertices of two triangles such that $ c=(1-r)a+rb $ and $ w=(1-r)u+rv $ , where r is a complex number, then the two triangles

Options:

A) Have the same area

B) Are similar

C) Are congruent

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let the complex number $ a,b,c $ and $ u,v,w $ represent the vertices $ A,B,C $ and $ D,E,F $ of the two triangle $ ABC $ and $ DEF $ respectively. Put $ b-a=r_1{e^{i{\theta_1}}} $ $ c-a=r_2{e^{i{\theta_2}}} $ $ v-u={\rho_1}{e^{i{\varphi_1}}},w-u={\rho_2}{e^{i{\varphi_2}}} $ and $ r=\lambda {e^{i\alpha }} $ Substituting these values in the given relations $ c-a=r(b-a) $ and $ w-u=(v-u)r, $ we have $ r_2{e^{i{\theta_2}}}=\lambda {e^{i\alpha }}r_1{e^{i{\theta_1}}}=\lambda r_1{e^{i(\alpha +{\theta_1})}} $ …….(i) and $ {\rho_2}{e^{i{\varphi_2}}}={\rho_1}{e^{i{\varphi_1}}}\lambda {e^{i\alpha }}=(\lambda {\rho_1}){e^{i({\varphi_1}+\alpha )}} $ …….(ii) Equating moduli and arguments of the complex numbers on both sides (i), we get $ r_2=\lambda r_1,{\theta_2}=\alpha +{\theta_1} $ i.e., $ AC=\lambda AB $ and $ \angle CAB={\theta_2}-{\theta_1}=\alpha $ Similarly from (ii), we shall get $ DF=\lambda DE $ and $ \angle FDE={\varphi_2}-{\varphi_1}=\alpha $ Thus we get $ \frac{AC}{DF}=\frac{AB}{DE} $ and $ \angle CAB=\angle FDE $ Hence the triangle $ ABC $ and $ DEF $ are similar.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें