Complex Numbers And Quadratic Equations question 15

Question: If $ x,\ y,\ z $ are real and distinct, then $ u=x^{2}+4y^{2}+9z^{2}-6yz-3zx-zxy $ is always [IIT 1979]

Options:

A) Non-negative

B) Non-positive

C) Zero

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ x,y,z\in R $ and distinct. Now, $ u=x^{2}+4y^{2}+9z^{2}-6yz-3zx-2xy $ $ =\frac{1}{2}(2x^{2}+8y^{2}+18z^{2}-12yz-6zx-4xy) $ $ =\frac{1}{2}{ x^{2}-4xy+4y^{2})+(x^{2}-6zx+9z^{2})+(4y^{2}-12yz+9z^{2}) } $ $ =\frac{1}{2}{ {{(x-2y)}^{2}}+{{(x-3z)}^{2}}+{{(2y-3z)}^{2}} } $ Since it is sum of squares. So $ u $ is always non- negative.