Complex Numbers And Quadratic Equations question 151

Question: If the complex number $ z_1,z_2 $ the origin form an equilateral triangle then $ z_1^{2}+z_2^{2}= $ [IIT 1983]

Options:

A) $ z_1z_2 $

B) $ z_1\overline{z_2} $

C) $ \overline{z_2}z_1 $

D) $ |z_1{{|}^{2}}=|z_2{{|}^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ OA,OB $ be the sides of an equilateral $ \Delta OAB $ and let $ OA,OB $ represent the complex numbers or vectors $ z_1,z_2 $ respectively. From the equilateral $ \Delta OAB,\overrightarrow{AB}=z_2-z_1 $
$ \therefore $ $ arg( \frac{z_2-z_1}{z_2} )=arg(z_2-z_1)-argz_2=\pi /3 $ and $ arg( \frac{z_2}{z_1} )=arg(z_2)-arg(z_1)=\frac{\pi }{3} $ Also $ | \frac{z_2-z_1}{z_2} |=1=| \frac{z_2}{z_1} | $ , since triangle is equilateral. Thus the vectors $ \frac{z_2-z_1}{z_2} $ and $ \frac{z_2}{z_1} $ have same modulus and same argument, which implies that the vectors are equal, that is $ \frac{z_2-z_1}{z_2}=\frac{z_2}{z_1} $ Þ $ z_1z_2-z_1^{2}=z_2^{2} $ Þ $ z_1^{2}+z_2^{2}=z_1z_2 $ Note: Students should remember this question as a formula.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें