Complex Numbers And Quadratic Equations question 152

Question: If at least one value of the complex number $ z=x+iy $ satisfy the condition $ |z+\sqrt{2}|=a^{2}-3a+2 $ and the inequality $ |z+i\sqrt{2}|<a^{2} $ , then

Options:

A) $ a>2 $

B) $ a=2 $

C) $ a<2 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

If $ z=x+iy $ is a complex number satisfying the given conditions, then $ a^{2}-3a+2=|z+\sqrt{2}|=|z+i\sqrt{2}+\sqrt{2}-i\sqrt{2}| $ $ \le |z+i\sqrt{2}|+\sqrt{2}|1-i| $ $ <a^{2}+2 $
Þ $ -3a<0\Rightarrow a>0 $ …..(i) Since $ |z+\sqrt{2}|=a^{2}-3a+2 $ represents a circle with centre at $ A(-\sqrt{2},0) $ and radius $ \sqrt{a^{2}-3a+2} $ , and $ |z+\sqrt{2}i| $ $ <a^{2} $ represents the interior of the circle with centre at $ B(0,-\sqrt{2}) $ and radius $ a $ , therefore there will be a complex number satisfying the given condition and the given inequality if the distance $ AB $ is less than the sum or difference of the radii of the two circles, i.e., if $ \sqrt{{{(-\sqrt{2}-0)}^{2}}+{{(0+\sqrt{2})}^{2}}}<\sqrt{a^{2}-3a+2}\pm a $
Þ $ 2\pm a<\sqrt{a^{2}-3a+2} $
Þ $ 4+a^{2}\pm 4a<a^{2}-3a+2 $
Þ $ -a<-2 $ or $ 7a<-2 $ Þ $ a>2 $ or $ a<-\frac{7}{2} $ But $ a>0 $ from (i), therefore $ a>2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें