Complex Numbers And Quadratic Equations question 157

Question: If the cube roots of unity be $ 1,\omega ,{{\omega }^{2}}, $ then the roots of the equation $ {{(x-1)}^{3}}+8=0 $ are [IIT 1979; MNR 1986; DCE 2000; AIEEE 2005]

Options:

A) $ -1,1+2\omega ,1+2{{\omega }^{2}} $

B) $ -1,1-2\omega ,1-2{{\omega }^{2}} $

C) $ -1,-1,-1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ {{(x-1)}^{3}}=-8\Rightarrow x-1={{(-8)}^{1/3}} $
Þ $ x-1=-2,-2\omega ,-2{{\omega }^{2}} $
Þ $ x=-1,1-2\omega ,1-2{{\omega }^{2}} $ Trick: By inspection, we see that (b) satisfies the equation i.e, $ {{(-1-1)}^{3}}+8=0,{{(1-2\omega -1)}^{3}}+8=0 $ $ {{(1-2{{\omega }^{2}}-1)}^{3}}+8=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें