Complex Numbers And Quadratic Equations question 158

Question: If $ 1,\omega ,{{\omega }^{2}},{{\omega }^{3}}…….,{{\omega }^{n-1}} $ are the $ n,n^{th} $ roots of unity, then $ (1-\omega )(1-{{\omega }^{2}})…..(1-{{\omega }^{n-1}}) $ equals [MNR 1992; IIT 1984; DCE 2001; MP PET 2004]

Options:

A) 0

B) 1

C) $ n $

D) $ n^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Since $ 1,\omega ,{{\omega }^{2}},{{\omega }^{3}},…..{{\omega }^{n-1}} $ are the $ n,n^{th} $ roots of unity, therefore, we have the identity $ =(x-1)(x-\omega )(x-{{\omega }^{2}})…..(x-{{\omega }^{n-1}})=x^{n}-1 $ or $ (x-\omega )(x-{{\omega }^{2}})…..(x-{{\omega }^{n-1}})=\frac{x^{n}-1}{x-1} $ = $ {x^{n-1}}+{x^{n-2}}+…..+x+1 $ Putting $ x=1 $ on both sides, we get $ (1-\omega )(1-{{\omega }^{2}})…..(1-{{\omega }^{n-1}})=n $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें