Complex Numbers And Quadratic Equations question 159

Question: The value of the expression $ 1.(2-\omega )(2-{{\omega }^{2}})+2.(3-\omega )(3-{{\omega }^{2}})+……. $ $ ….+(n-1).(n-\omega )(n-{{\omega }^{2}}), $ where $ \omega $ is an imaginary cube root of unity, is [IIT 1996]

Options:

A) $ \frac{1}{2}(n-1)n(n^{2}+3n+4) $

B) $ \frac{1}{4}(n-1)n(n^{2}+3n+4) $

C) $ \frac{1}{2}(n+1)n(n^{2}+3n+4) $

D) $ \frac{1}{4}(n+1)n(n^{2}+3n+4) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ r^{th} $ term of the given series = $ r[(r+1)-\omega ][(r+1)-{{\omega }^{2}}] $ = $ r[{{(r+1)}^{2}}-(\omega +{{\omega }^{2}})(r+1)+{{\omega }^{3}}] $ = $ r[{{(r+1)}^{2}}-(-1)(r+1)+1] $ = $ r[(r^{2}+3r+3]=r^{3}+3r^{2}+3r $ Thus sum of the given series $ =\sum\limits_{r=1}^{(n-1)}{(r^{3}+3r^{2}+3r)} $ $ =\frac{1}{4}{{(n-1)}^{2}}n^{2}+3.\frac{1}{6}(n-1)(n)(2n-1)+3.\frac{1}{2}(n-1)n $ $ =\frac{1}{4}(n-1)n(n^{2}+3n+4) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें