Complex Numbers And Quadratic Equations question 164

Question: $ \omega $ is an imaginary cube root of unity. If $ {{(1+{{\omega }^{2}})}^{m}}= $ $ {{(1+{{\omega }^{4}})}^{m}}, $ then least positive integral value of m is [IIT Screening 2004]

Options:

A) 6

B) 5

C) 4

D) 3

Show Answer

Answer:

Correct Answer: D

Solution:

We have, $ {{(1+{{\omega }^{2}})}^{m}}={{(1+{{\omega }^{4}})}^{m}} $ $ (\because {{\omega }^{3}}=1) $ $ {{(1+{{\omega }^{2}})}^{m}}={{(1+\omega )}^{m}} $ $ {{(-\omega )}^{m}}={{(-{{\omega }^{2}})}^{m}} $
$ \Rightarrow {{( \frac{\omega }{{{\omega }^{2}}} )}^{m}}=1 $
$ \Rightarrow {{({{\omega }^{2}})}^{m}}=1 $ $ ={{(\omega )}^{2m}}=({{\omega }^{3}}) $
$ \Rightarrow m=\frac{3}{2} $ Hence least positive integral value of m is 3.