Complex Numbers And Quadratic Equations question 164
Question: $ \omega $ is an imaginary cube root of unity. If $ {{(1+{{\omega }^{2}})}^{m}}= $ $ {{(1+{{\omega }^{4}})}^{m}}, $ then least positive integral value of m is [IIT Screening 2004]
Options:
6
5
4
3
Show Answer
Answer:
Correct Answer: D
Solution:
We have,  $ {{(1+{{\omega }^{2}})}^{m}}={{(1+{{\omega }^{4}})}^{m}} $   $ (\because {{\omega }^{3}}=1) $   $ {{(1+{{\omega }^{2}})}^{m}}={{(1+{{\omega }^{2}})}^{m}} $   $ {{(-\omega )}^{m}}={{(-{{\omega }^{2}})}^{^{m}}} $
$ \Rightarrow {{( \frac{\omega }{{{\omega }^{2}}} )}^{m}}=1 $
$ \Rightarrow {{({{\omega }^{2}})}^{m}}=1 $  $ ={{(\omega )}^{2m}}=({{\omega }^{3m}}) $
$ \Rightarrow m=\frac{3}{2} $  Hence least positive integral value of m is 2.
 BETA
  BETA 
             
             
           
           
           
          