Complex Numbers And Quadratic Equations question 17

Question: If $ x $ is real, the function $ \frac{(x-a)(x-b)}{(x-c)} $ will assume all real values, provided [IIT 1984; Karnataka CET 2002]

Options:

A) $ a>b>c $

B) $ a<b<c $

C) $ a>c<b $

D) $ a<c<b $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ y=\frac{(x-a)(x-b)}{(x-c)} $ or $ y(x-c)=x^{2}-(a+b)x+ab $ or $ x^{2}-(a+b+y)x+ab+cy=0 $ $ \Delta ={{(a+b+y)}^{2}}-4(ab+cy) $ $ =y^{2}+2y(a+b-2c)+{{(a-b)}^{2}} $ Since x is real and y assumes all real values, we must have $ \Delta \ge 0 $ for all real values of y.The sign of a quadratic in y is same as of first term provided its discriminant $ B^{2}-4AC<0 $ This will be so if $ 4{{(a+b-2c)}^{2}}-4{{(a-b)}^{2}}<0 $ or $ 4(a+b-2c+a-b)(a+b-2c-a+b)<0 $ or $ 16(a-c)(b-c)<0 $ or $ 16(c-a)(c-b)=- $ ve \ c lies between a and b i.e., $ a<c<b $ …..(i) Where $ a<b $ , but if $ b<a $ then the above condition will be $ b<c<a $ or $ a>c>b $ …..(ii) Hence from (i) and (ii) we observe that (d) is correct answer.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें