Complex Numbers And Quadratic Equations question 170

Question: If $ x $ is real and $ k=\frac{x^{2}-x+1}{x^{2}+x+1}, $ then [MNR 1992; RPET 1997]

Options:

A) $ \frac{1}{3}\le k\le 3 $

B) $ k\ge 5 $

C) $ k\le 0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

From $ k=\frac{x^{2}-x+1}{x^{2}+x+1} $ We have $ x^{2}(k-1)+x(k+1)+k-1=0 $ As given, x is real Þ $ {{(k+1)}^{2}}-4{{(k-1)}^{2}}\ge 0 $
Þ $ 3k^{2}-10k+3\ge 0 $ Which is possible only when the value of k lies between the roots of the equation $ 3k^{2}-10k+3=0 $ That is, when $ \frac{1}{3}\le k\le 3 $ {Since roots are $ \frac{1}{3} $ and 3}