Complex Numbers And Quadratic Equations question 177

Question: If one root of the quadratic equation $ ax^{2}+bx+c=0 $ is equal to the nth power of the other root, then the value of $ {{(ac^{n})}^{\frac{1}{n+1}}}+{{(a^{n}c)}^{\frac{1}{n+1}}}= $ [IIT 1983]

Options:

A) $ b $

B) - b

C) $ {b^{\frac{1}{n+1}}} $

D) $ -{b^{\frac{1}{n+1}}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ \alpha ,{{\alpha }^{n}} $ be the two roots. Then $ \alpha +{{\alpha }^{n}}=-b/a,\alpha {{\alpha }^{n}}=c/a $ Eliminating $ \alpha $ , we get $ {{( \frac{c}{a} )}^{\frac{1}{n+1}}}+{{( \frac{c}{a} )}^{\frac{n}{n+1}}}=-\frac{b}{a} $
Þ $ a.{a^{-\ \frac{1}{n+1}}}.{c^{\frac{1}{n+1}}}+a.{a^{-\frac{n}{n+1}}}.{c^{\frac{n}{n+1}}}=-b $ or $ {{(a^{n}c)}^{\frac{1}{n+1}}}+{{(ac^{n})}^{\frac{1}{n+1}}}=-b $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें