Complex Numbers And Quadratic Equations question 179

Question: If both the roots of the quadratic equation $ x^{2}-2kx+k^{2}+k-5=0 $ are less than 5, then $ k $ lies in the interval [AIEEE 2005]

Options:

A) $ (-\infty ,4) $

B) [4, 5]

C) (5, 6]

D) (6, $ \infty $ )

Show Answer

Answer:

Correct Answer: A

Solution:

$ x^{2}-2kx+k^{2}+k-5=0 $ Roots are less than 5, $ D\ge 0 $ $ 4k^{2}-4(k^{2}+k-5)\ge 0 $ ??(i) Þ $ k\le 5 $
Þ $ f(5)>0 $ …..(ii) Þ $ k\in (-\infty ,4)\cup (5,\infty ) $ ; $ -( \frac{2k}{2} )<5\Rightarrow k<5 $ …….(iii) form (i), (ii) and (iii), $ k\in (-\infty ,4) $