Complex Numbers And Quadratic Equations question 18

Question: If $ x $ is real, then the maximum and minimum values of the expression $ \frac{x^{2}-3x+4}{x^{2}+3x+4} $ will be [IIT 1984]

Options:

A) 2, 1

B) $ 5,\frac{1}{5} $

C) $ 7,\frac{1}{7} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ y=\frac{x^{2}-3x+4}{x^{2}+3x+4} $
Þ $ (y-1)x^{2}+3(y+1)x+4(y-1)=0 $ For x is real $ D\ge 0 $
Þ $ 9{{(y+1)}^{2}}-16{{(y-1)}^{2}}\ge 0 $
Þ $ -7y^{2}+50y-7\ge 0 $ Þ $ 7y^{2}-50y+7\le 0 $
Þ $ (y-7)(7y-1)\le 0 $ Now, the product of two factors is negative if one in and one in . Case I : $ (y-7)\ge 0 $ and $ (7y-1)\le 0 $
Þ $ y\ge 7 $ and $ y\le \frac{1}{7} $ . But it is impossible Case II : $ (y-7)\le 0 $ and $ (7y-1)\ge 0 $
Þ $ y\le 7 $ and $ y\ge \frac{1}{7}\Rightarrow \frac{1}{7}\le y\le 7 $ Hence maximum value is 7 and minimum value is $ \frac{1}{7} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें