Complex Numbers And Quadratic Equations question 180

Question: If the roots of the equations $ x^{2}-bx+c=0 $ and $ x^{2}-cx+b=0 $ differ by the same quantity, then $ b+c $ is equal to [BIT Ranchi 1969; MP PET 1993]

Options:

A) 4

B) 1

C) 0

D) -4

Show Answer

Answer:

Correct Answer: D

Solution:

Let the roots are $ \alpha ,\beta $ of $ x^{2}-bx+c=0 $ and $ {\alpha }’,{\beta }’ $ be roots of $ x^{2}-cx+b=0 $ Now $ \alpha -\beta =\sqrt{{{(\alpha +\beta )}^{2}}-4\alpha \beta }=\sqrt{b^{2}-4c} $ …..(i) and $ \alpha ‘-\beta ‘=\sqrt{{{(\alpha ‘+\beta ‘)}^{2}}-4\alpha ‘\beta ‘}=\sqrt{c^{2}-4b} $ …..(ii) But $ \alpha -\beta =\alpha ‘-\beta ’ $
Þ $ \sqrt{b^{2}-4c}=\sqrt{c^{2}-4b}\Rightarrow b^{2}-4c=c^{2}-4b $
Þ $ b^{2}-c^{2}=4c-4b $
Þ $ (b+c)(b-c)=4(c-b) $ Þ $ b+c=-4 $