Complex Numbers And Quadratic Equations question 180

Question: If the roots of the equations $ x^{2}-bx+c=0 $ and $ x^{2}-cx+b=0 $ differ by the same quantity, then $ b+c $ is equal to [BIT Ranchi 1969; MP PET 1993]

Options:

A) 4

B) 1

C) 0

D) -4

Show Answer

Answer:

Correct Answer: D

Solution:

Let the roots are $ \alpha ,\beta $ of $ x^{2}-bx+c=0 $ and $ {\alpha }’,{\beta }’ $ be roots of $ x^{2}-cx+b=0 $ Now $ \alpha -\beta =\sqrt{{{(\alpha +\beta )}^{2}}-4\alpha \beta }=\sqrt{b^{2}-4c} $ …..(i) and $ \alpha ‘-\beta ‘=\sqrt{{{(\alpha ‘+\beta ‘)}^{2}}-4\alpha ‘\beta ‘}=\sqrt{c^{2}-4b} $ …..(ii) But $ \alpha -\beta =\alpha ‘-\beta ’ $
Þ $ \sqrt{b^{2}-4c}=\sqrt{c^{2}-4b}\Rightarrow b^{2}-4c=c^{2}-4b $
Þ $ b^{2}-c^{2}=4c-4b $
Þ $ (b+c)(b-c)=4(c-b) $ Þ $ b+c=-4 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें