Complex Numbers And Quadratic Equations question 182
Question: If a root of the given equation $ a(b-c)x^{2}+b(c-a)x+c(a-b)=0 $ is 1, then the other will be [RPET 1986]
Options:
A) $ \frac{a(b-c)}{b(c-a)} $
B) $ \frac{b(c-a)}{a(b-c)} $
C) $ \frac{c(a-b)}{a(b-c)} $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
Let $ \alpha =1 $ and the other root is $ \beta $ , then product of roots 1. $ \beta =\frac{c(a-b)}{a(b-c)}\Rightarrow \beta =\frac{c(a-b)}{a(b-c)} $