Complex Numbers And Quadratic Equations question 187

Question: If $ \alpha ,\beta $ are the roots of $ x^{2}-ax+b=0 $ and if $ {{\alpha }^{n}}+{{\beta }^{n}}=V_{n} $ , then [RPET 1995; Karnataka CET 2000; Pb. CET 2002]

Options:

A) $ {V_{n+1}}=aV_{n}+b{V_{n-1}} $

B) $ {V_{n+1}}=aV_{n}+a{V_{n-1}} $

C) $ {V_{n+1}}=aV_{n}-b{V_{n-1}} $

D) $ {V_{n+1}}=a{V_{n-1}}-bV_{n} $

Show Answer

Answer:

Correct Answer: C

Solution:

Multiplying $ x^{2}-ax+b=0 $ by $ {x^{n-1}} $ $ {x^{n+1}}-ax^{n}+b{x^{n-1}}=0 $ …..(i) $ \alpha ,\beta $ are roots of $ x^{2}-ax+b=0 $ , therefore they will satisfy (i) also $ {{\alpha }^{n+1}}-a{{\alpha }^{n}}+b{{\alpha }^{n-1}}=0 $ …..(ii) and $ {{\beta }^{n+1}}-a{{\beta }^{n}}+b{{\beta }^{n-1}}=0 $ …..(iii) Adding (ii) and (iii) $ ({{\alpha }^{n+1}}+{{\beta }^{n+1}})-a({{\alpha }^{n}}+{{\beta }^{n}})+b({{\alpha }^{n-1}}+{{\beta }^{n-1}})=0 $ or $ {V_{n+1}}-aV_{n}+b{V_{n-1}}=0 $ or $ {V_{n+1}}=aV_{n}-b{V_{n-1}}=0 $ (Given $ {{\alpha }^{n}}+{{\beta }^{n}}=V_{n} $ ) Trick: Put $ n=0 $ , $ 1,2 $ $ V_0={{\alpha }^{0}}+{{\beta }^{0}}=2 $ , $ V_1=\alpha +\beta =a $ , $ {{\alpha }^{2}}+{{\beta }^{2}}=V_2=a^{2}-2b $ Now the option C Þ $ V_2=aV_1-bV_0=a^{2}-2b $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें