Complex Numbers And Quadratic Equations question 19

Question: If $ x $ is real, then the value of $ \frac{x^{2}+34x-71}{x^{2}+2x-7} $ does not lie between [Roorkee 1983]

Options:

A) -9 and -5

B) -5 and 9

C) 0 and 9

D) 5 and 9

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ y=\frac{x^{2}+34x-71}{x^{2}+2x-7} $
Þ $ x^{2}(y-1)+2(y-17)x+(71-7y)=0 $ For real values of x, its discriminant $ D\ge 0 $
$ \Rightarrow 4{{(y-17)}^{2}}-4(y-1)(71-7y)\ge 0 $
$ \Rightarrow (y^{2}-3+y+289)-(71y-7y^{2}-71+7y)\ge 0 $
$ \Rightarrow y^{2}-14y+45\ge 0\Rightarrow (y-5)(y-9)\ge 0 $ It is possible when both $ y-5 $ and $ y-9 $ are negative or both positive. Let $ y-5\le 0\Rightarrow y\le 5 $ and $ y-9\le 0\Rightarrow y\le 9 $ . Hence $ y\le 5 $ …..(i) If $ y-5\ge 0\Rightarrow $ $ y\ge 5 $ and $ y-9\ge 0\Rightarrow y\ge 9 $ Hence $ y\ge 9 $ . …..(ii) Therefore y does not lie between 5 and 9.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें