Complex Numbers And Quadratic Equations question 190
Question: The product of all real roots of the equation $ x^{2}-|x|-6=0 $ is [Roorkee 2000]
Options:
A) - 9
B) 6
C) 9
D) 36
Show Answer
Answer:
Correct Answer: A
Solution:
Given equation $ x^{2}-|x|-6=0 $ If $ x>0 $ , \ equation is $ x^{2}-x-6=0 $
Þ $ (x-3)(x+2)=0 $
Þ $ x=3,x=-2 $
Þ $ x=3 $ If $ x<0 $ , \ equation is $ x^{2}+x-6=0 $
Þ $ (x+3)(x-2)=0 $
Þ $ x=-3,x=2 $
Þ $ x=-3 $ Hence product of all possible real roots = - 9.