Complex Numbers And Quadratic Equations question 190

Question: The product of all real roots of the equation $ x^{2}-|x|-6=0 $ is [Roorkee 2000]

Options:

A) - 9

B) 6

C) 9

D) 36

Show Answer

Answer:

Correct Answer: A

Solution:

Given equation $ x^{2}-|x|-6=0 $ If $ x>0 $ , \ equation is $ x^{2}-x-6=0 $
Þ $ (x-3)(x+2)=0 $
Þ $ x=3,x=-2 $
Þ $ x=3 $ If $ x<0 $ , \ equation is $ x^{2}+x-6=0 $
Þ $ (x+3)(x-2)=0 $
Þ $ x=-3,x=2 $
Þ $ x=-3 $ Hence product of all possible real roots = - 9.