Complex Numbers And Quadratic Equations question 190
Question: The product of all real roots of the equation $ x^{2}-|x|-6=0 $ is [Roorkee 2000]
Options:
A) - 9
B) 6
C) 9
D) 36
Show Answer
Answer:
Correct Answer: A
Solution:
Given equation  $ x^{2}-|x|-6=0 $  If $ x>0 $ , \ equation is  $ x^{2}-x-6=0 $
Þ  $ (x-3)(x+2)=0 $
Þ   $ x=3,x=-2 $
Þ  $ x=3 $  If $ x<0 $ ,  \ equation is  $ x^{2}+x-6=0 $
Þ  $ (x+3)(x-2)=0 $
Þ   $ x=-3,x=2 $
Þ   $ x=-3 $  Hence product of all possible real roots = - 9.
 BETA
  BETA 
             
             
           
           
           
          