Complex Numbers And Quadratic Equations question 194

Question: The value of ‘a’ for which one root of the quadratic equation $ (a^{2}-5a+3)x^{2}+(3a-1)x+2=0 $ is twice as large as the other, is [AIEEE 2003]

Options:

A) $ \frac{2}{3} $

B) $ -\frac{2}{3} $

C) $ \frac{1}{3} $

D) $ -\frac{1}{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let the roots are a and 2a Þ $ \alpha +2\alpha =\frac{1-3a}{a^{2}-5a+3} $ and $ \alpha .2\alpha =\frac{2}{a^{2}-5a+3} $
Þ $ 2[ \frac{1}{9}\frac{{{(1-3a)}^{2}}}{{{(a^{2}-5a+3)}^{2}}} ]=\frac{2}{a^{2}-5a+3} $
Þ $ \frac{{{(1-3a)}^{2}}}{(a^{2}-5a+3)}=9 $
$ \Rightarrow 9a^{2}-6a+1=9a^{2}-45a+27 $
Þ $ 39a=26 $
$ \Rightarrow a=\frac{2}{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें