Complex Numbers And Quadratic Equations question 195

Question: If $ a,b,c $ are in G.P., then the equations $ ax^{2}+2bx+c=0 $ and $ dx^{2}+2ex+f=0 $ have a common root if $ \frac{d}{a},\frac{e}{b},\frac{f}{c} $ are in [IIT 1985; Pb. CET 2000; DCE 2000]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

As given, $ b^{2}=ac $ Þ equation $ ax^{2}+2bx+c=0 $ can be written as $ ax^{2}+2\sqrt{ac}x+c=0 $
Þ $ {{(\sqrt{a}x+\sqrt{c})}^{2}}=0 $
Þ $ x=-\sqrt{\frac{c}{a}} $ (repeated root) This must be the common root by hypothesis. So it must satisfy the equation $ dx^{2}+2ex+f=0 $
Þ $ d\frac{c}{a}-2e\sqrt{\frac{c}{a}}+f=0 $
Þ $ \frac{d}{a}+\frac{f}{c}=\frac{2e}{c}\sqrt{\frac{c}{a}}=\frac{2e}{b} $
Þ $ \frac{d}{a},\frac{e}{b},\frac{f}{c} $ are in A.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें