Complex Numbers And Quadratic Equations question 196
Question: The value of ‘a’ for which the equations $ x^{2}-3x+a=0 $ and $ x^{2}+ax-3=0 $ have a common root is [Pb. CET 1999]
Options:
A) 3
B) 1
C) - 2
D) 2
Show Answer
Answer:
Correct Answer: D
Solution:
Given equations are  $ x^{2}-3x+a=0 $     ??(i) and              $ x^{2}+ax-3=0 $                   ??(ii) Subtracting (ii) from (i), we get
Þ   $ -3x-ax+a+3=0 $
$ \Rightarrow (a+3)(-x+1)=0 $
Þ  either  $ a=-3 $  or  $ x=1 $  When  $ a=-3, $ the two equations are identical. So, we take  $ x=1, $  which is the common root of the two equations. Substituting  $ x=1 $  in (i), we get   $ 1+a-3=0\Rightarrow a=2. $
 BETA
  BETA 
             
             
           
           
           
          