Complex Numbers And Quadratic Equations question 198
Question: The roots of the equation $ 4x^{4}-24x^{3}+57x^{2}+18x-45=0 $ , If one of them is $ 3+i\sqrt{6} $ , are
Options:
A) $ 3-i\sqrt{6},\pm \sqrt{\frac{3}{2}} $
B) $ 3-i\sqrt{6},\pm \frac{3}{\sqrt{2}} $
C) $ 3-i\sqrt{6},\pm \frac{\sqrt{3}}{2} $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ x^{2}-6x+15=0 $ is quadratic corresponding to roots $ 3\pm i\sqrt{6} $ and dividing the given equation by this, we get $ 4x^{2}-3=0 $ Þ $ x=\pm \frac{\sqrt{3}}{2} $ .