Complex Numbers And Quadratic Equations question 199

Question: The values of a for which $ 2x^{2}-2(2a+1)x+a(a+1)=0 $ may have one root less than a and other root greater than a are given by [UPSEAT 2001]

Options:

A) $ 1>a>0 $

B) $ -1<a<0 $

C) $ a\ge 0 $

D) $ a>0\text{or }a<-1 $

Show Answer

Answer:

Correct Answer: D

Solution:

The given condition suggest that a lies between the roots. Let $ f(x)=2x^{2}-2(2a+1)x+a(a+1) $ For ?a? to lie between the roots we must have Discriminant $ \ge 0 $ and $ f(a)<0 $ . Now, Discriminant $ \ge 0 $
$ \Rightarrow 4{{(2a+1)}^{2}}-8a(a+1)\ge 0 $
$ \Rightarrow 8(a^{2}+a+1/2)\ge 0 $ which is always true. Also $ f(a)<0\Rightarrow 2a^{2}-2a(2a+1)+a(a+1)<0 $
$ \Rightarrow -a^{2}-a<0 $
$ \Rightarrow a^{2}+a>0\Rightarrow a(1+a)>0 $
$ \Rightarrow a>0 $ or $ a<-1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें