Complex Numbers And Quadratic Equations question 200

Question: Let $ a,b,c $ be real numbers $ a\ne 0 $ . If $ \alpha $ is a root $ a^{2}x^{2}+bx+c=0 $ , $ \beta $ is a root of $ a^{2}x^{2}-bx-c=0 $ and $ 0<\alpha <\beta $ , then the equation $ a^{2}x^{2}+2bx+2c=0 $ has a root $ \gamma $ that always satisfies [IIT 1989]

Options:

A) $ \gamma =\frac{\alpha +\beta }{2} $

B) $ \gamma =\alpha +\frac{\beta }{2} $

C) $ \gamma =\alpha $

D) $ \alpha <\gamma <\beta $

Show Answer

Answer:

Correct Answer: D

Solution:

Since $ \alpha $ and $ \beta $ are the roots of given equations. So we have $ a^{2}{{\alpha }^{2}}+b\alpha +c=0 $ and $ a^{2}{{\beta }^{2}}-b\beta -c=0 $ . Let $ f(x)=a^{2}x^{2}+2bx+2c=0 $ Then $ f(\alpha )=a^{2}{{\alpha }^{2}}+2b\alpha +2c=0 $ $ =a^{2}{{\alpha }^{2}}+2(b\alpha +c)=a^{2}{{\alpha }^{2}}-2a^{2}{{\alpha }^{2}}=-a^{2}{{\alpha }^{2}}=-ve $ and $ f(\beta )=a^{2}{{\beta }^{2}}+2(b\beta +c)=a^{2}{{\beta }^{2}}+2a^{2}{{\beta }^{2}} $ $ =3a^{2}{{\beta }^{2}}=+ve $ Since $ f(\alpha ) $ and $ f(\beta ) $ are of opposite signs, therefore by theory of equations there lies a root $ \gamma $ of the equation $ f(x)=0 $ between $ \alpha $ and $ \beta $ i.e. $ \alpha <\gamma <\beta $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें